

Journal of Organometallic Chemistry 487 (1995) 223-226

Synthese und Eigenschaften von 1,1,2,2-Tetrachlorund 1,1,2,2-Tetrafluordisilan

K. Hassler *, W. Köll

Institut für Anorganische Chemie der T.U. Graz, Stremayrgasse 16, A-8010 Graz, Österreich

Eingegangen den 26. Mai 1994; in revidierte Form den 11. Juli 1994

Abstract

1,1,2,2-tetrachlorodisilane was prepared from 1,1,2,2-tetramesityldisilane by reaction with liquid HCl, 1,1,2,2-tetrafluorodisilane by fluorination of tetrabromodisilane with ZnF_2 . With PCl₅, 1,1,2,2-tetramesityldisilane was easily chlorinated to form 1,2-dichlorotetramesityldisilane but the subsequent reduction with LiAlD₄ was not successful. The ²⁹Si-NMR, Infrared and Raman spectra are reported.

Zusammenfassung

1,1,2,2-Tetrachlordisilan wurde aus 1,1,2,2-Tetramesityldisilan mit flüssigem HCl dargestellt, 1,1,2,2-Tetrafluordisilan durch Fluorierung von Tetrabromdisilan mit ZnF_2 . Mit PCl₅ ließ sich 1,1,2,2-Tetramesityldisilan zum 1,2-Dichlortetramesityldisilan chlorieren, eine anschließende Reduktion mit LiAlD₄ gelang jedoch nicht. Die ²⁹Si-NMR-, Infrarot- und Ramanspektren werden berichtet.

Keywords: Silicon; Halogenated disilanes; NMR spectroscopy

1. Einleitung

Trotz der einfachen Struktur der Chlor- und Fluordisilane wurden bisher kaum brauchbare Synthesewege für die Darstellung von Reinsubstanzen beschrieben. Bei den aus der Literatur bekannten Darstellungen von $Si_2X_nH_{6-n}$ (X = Cl, F; n = 1-5) handelt es sich bei Chlordisilanen hauptsächlich um eine direkte Halogenierung von Si_2H_6 mit Chlorierungsreagenzien wie Cl₂ [1], BCl₃ [2] oder SnCl₄ [3]. Fluordisilane wurden bis vor kurzem meist durch Reaktion von SiF₂ mit Wasserstoffverbindungen der Elemente Bor [4] oder Phosphor [5], erst neuerdings durch selektive Reduktion von Bromfluordisilanen [6] dargestellt.

Die meisten der bisher beschriebenen Darstellungsmethoden liefern ein Gemisch von Disilanen mit unterschiedlichem Halogenierungsgrad. Die Handhabung von Si_2H_6 ist zudem gefährlich und umständlich.

Als Reinsubstanzen dargestellt und charakterisiert wurden bisher neben den Hexahalogendisilanen Si_2Cl_6 und Si_2F_6 $Si_2H_5Cl[7-9]$, $Cl_2HSiSiH_3[10]$ und Si_2HCl_5 [11] sowie Si_2H_5F [11], H_3SiSiF_3 [6] und Si_2HF_5 [12,13]. Während der Abfassung dieses Manuskriptes wurde von Uhlig [14] über die Synthesen von Cl_3SiSiH_3 und $Cl_2HSiSiH_3$ berichtet.

Die Abspaltung von Phenylgruppen an Phenyldisilanen mit $HCl/AlCl_3$ ist eine bewährte Methode zur Einführung von Chlor in Siliziumverbindungen. Für Disilane Si₂Cl_nH_{6-n} liefert diese Reaktion aber durch Destillation oder fraktionierte Kondensation nicht trennbare Substanz/Lösungsmittelgemische, da die Chlordisilane mit Benzen Azeotrope bilden [10,15]. Die Einführung von Mesitylgruppen anstelle der Phenylreste vermeidet wegen des hohen Siedepunktes des bei der Reaktion gebildeten Mesitylens (165°C) diesen Umstand und ermöglicht eine Reindarstellung von 1,1,2,2-Tetrachlordisilan. Die Reaktion von

^{*} Corresponding author.

⁰⁰²²⁻³²⁸X/95/\$09.50 © 1995 Elsevier Science S.A. All rights reserved SSDI 0022-328X(94)05099-6

Mes₂HSiSiHMes₂ [16] mit gasförmigem HCl unter AlCl₃ Katalyse ergab keine Bildung von Tetrachlordisilan (Monosilanbildung unter Si-Si-Bindungspaltung), jedoch erwies sich die Reaktion im Bombenrohr (flüssiger Chlorwasserstoff) als geeignet, wobei die Reaktion auch ohne AlCl₃ glatt verläuft und so mögliche Umlagerungsreaktionen vermieden werden.

Die Chlorierung von 1,1,2,2-Tetramesityldisilan mit PCl₅ erfolgt zwar langsam, aber die Isolierung des Produktes ist weniger aufwendig als bei der in der Literatur beschriebenen Chlorierung mit N-Chlorsuccinimid [17]. Eine anschließende Deuterierung mit Lithiumaluminiumdeuterid gelingt auch nach mehrtägiger Reaktionszeit in Diethylether oder Dioxan nicht.

Die Reindarstellung von ClH2SiSiH2Cl ausgehend von MesH₂SiSiH₂Mes ist ebenfalls möglich [18]. Versuche, Mes₂HSiSiH₂Mes mittels Reaktion von Mes₂HSiSiHMes₂ mit Trifluormethansulfonsäure und anschließender Reduktion mit LiAlH₄ darzustellen, gelangen nicht (siehe Experimenteller Teil).

Die Fluorierung von Br₂HSiSiHBr₂ [19] mit ZnF₂ liefert 1,1,2,2-Tetrafluordisilan und in geringen Mengen Si-Si-Bindungsspaltungsprodukte wie SiF₃H und SiF₂H₂.

2. Experimenteller Teil

2.1. Spektrometer

Die Kernresonanzspektren wurden mit einem BRUKER MSL-300 Kernresonanzspektrometer (59, 627 MHz für ²⁹Si) aufgenommen. Als Lösungsmittel diente C₆D₆, chemische Verschiebungen $\delta({}^{1}H)$ und $\delta(^{29}\text{Si})$ [ppm] sind auf TMS bezogen. Infrarotspektren von Gasen wurden in einer 10 cm Gasküvette aufgenommen und Flüssigkeiten als Film zwischen zwei CsBr Scheiben vermessen. Dazu wurde ein PERKIN-ELMER Spektralphotometer 325 verwendet. Für Ramanspektren wurden die Proben in 1 mm Kapillarröhrchen einkondensiert und mit einem IFS66 Ramanspektrometer der Firma BRUKER vermessen. Die Autoren danken Frau Dr. K. Schenzel, Institut für Analytik und Umweltchemie, Weinbergweg 16, D-06120 Halle, Deutschland, für die Aufnahme der Ramanspektren.

2.2. Substanzen

2.2.1. 1,1,2,2-Tetrachlordisilan

Auf 13,4 g (25 mmol) $Mes_2HSiSiHMes_2$ werden ca. 500 mmol HCl kondensiert und man läßt im geschlossenen Bombenrohr 1 h bei -70°C reagieren, wobei man eine klare, farblose Lösung erhält. Nach Entfernen des überschüssigen HCl erhält man durch Destillation bei vermindertem Druck 3,5 g (70%) $Cl_2HSiSiHCl_2$ als klare, farblose Flüssigkeit (b.p.₆₀ =

55°C). Die Reinheit der Substanz wurde mittels ¹Hund ²⁹Si-Kernresonazspektroskopie (Kopplungsmuster) überprüft.

¹H-NMR: $\delta = 5,19$; ³ $J_{HH} = 3,5$ Hz; ²⁹Si-NMR: $\delta = -5,48$; ¹ $J_{SiH} = 284,7$ Hz; ² $J_{SiH} = 36,2$ Hz; ¹ $J_{SiSi} = 153 \pm$ 3 Hz

2.2.2. 1,2-Dichlortetramesityldisilan

Zu einer Suspension von 5,0 g (24 mmol) PCl, in 50 ml CCl₄ wird eine Lösung von 4,9 g (9,1 mmol) Mes₂HSiSiHMes₂ in 100 ml CCl₄ getropft und bis zur vollständigen Reaktion (5 Tage) unter Rückfluß erhitzt. Nach Entfernen des Lösungsmittels und von PCl₂ wird überschüssiges PCl₅ bei 160°C/0,05 mbar absublimiert. Der Rückstand wird aus Toluen umkristallisiert und man erhält 3,4 g (62%) eines kristallinen Feststoffes. Elementaranalyse $C_{36}H_{44}Cl_2Si_2:C$ gef./ber 71,5/71,6%; H 7,4/7,3%; ²⁹Si-NMR: $\delta = -3,7$ ppm IR (Nujolverreibung, $< 1000 \text{ cm}^{-1}$): 847s, 640w, 620m, 610m, 599s, 565m, 548m, 503w, 482s, 400m, 383s, 356w, 300w.

2.2.3. Versuche zur Deuterierung von 1,2-Dichlortetramesityldisilan

Mes₂ClSiSiClMes₂ wird mit einem doppelten Überschuß an LiAlD₄ in Diethylether mehrere Tage unter Rückfluß gehalten. Nach wässriger Aufarbeitung mit 2 N H₂SO₄ isoliert man nahezu 100% der Ausgangssubstanz. Auch ein Ansatz in 1,4-Dioxan bei 80°C ergab keine Anzeichen einer Reduktion der Si-Cl-Bindung.

2.2.4. Reaktion von Mes, HSiSiHMes, mit Trifluormethansulfonsäure

Die Umsetzungen wurden jeweils in Toluol bei verschiedenen Temperaturen (-40°C, 0°C und Raumtemperatur) durchgeführt. Nach Zugabe von einem Äquivalent CF₃SO₃H findet man im ²⁹Si-NMR-Spektrum noch teilweise Ausgangssubstanz und weitere Signale, die jedoch nicht von der gewünschten Substanz TfMesHSiSiHMes, herrühren.

2.2.5. 1,1,2,2-Tetrafluordisilan

2,5 g (6,6 mmol) Br₂HSiSiHBr₂ werden mit 20 ml C₄Cl₆ verdünnt und bei 30 Torr zu 14 g (135 mmol) ZnF_2 , die in 50 ml C₄Cl₆ vorgelegt werden, getropft. Die bei der Reaktion entstehenden Gase werden in zwei Kühlfallen aufgefangen. Bei - 30°C wird 1,1,2,2-Tetrafluordisilan zurückgehalten. Man erhält 0,56 g (63%) eines farblosen Gases. Spaltprodukte wie SiF₃H und SiF₂H₂ befinden sich ausschließlich in der zweiten auf -170° C gehaltenen Kühlfalle.

and -170 C genarener Kumane. ²⁹Si-NMR: $\delta = -21,3$ ppm; ${}^{1}J_{SiH} = 278,5$ Hz; ${}^{1}J_{SiF} = 336,3$ Hz; ${}^{2}J_{SiH} = 46,4$ Hz; ${}^{2}J_{SiF} = 47,2$ Hz ¹H-NMR: $\delta = 4,75$ ppm (mult. Triplett); ${}^{2}J_{FH} = 50,8$ Hz; ${}^{3}J_{FH} = {}^{3}J_{HH} = 6,7$ Hz ¹⁹F-NMR: $\delta = -145,46$ ppm

3. Spektren

3.1. Infrarot und Ramanspektren

Tabelle 1 faßt die gemessenen Infrarot- und Ramanspektren von Cl₂HSiSiHCl₂ und F₂HSiSiHF₂ zusammen. Da Rotationsbarrieren um Si-Si-Bindungen im allgemeinen über 2,5 kJ mol⁻¹ (= RT bei Raumtemperatur) liegen, ist damit zu rechnen, daß auch die in dieser Arbeit beschriebenen Disilane als Rotamerengemische (anti und gauche) vorliegen. Die anti-Konformeren besitzen ein Inversionszentrum und sollten daher das Alternativverbot befolgen, die Normalschwingungen der gauche-Konformeren sind dagegen sowohl IR- als auch ramanaktiv. Die gemessenen Spektren belegen in der Tat klar, daß es sich um Rotamerengemische handelt. So ist die Anzahl der SiH-Deformationen im IR-Spektrum (gas) der Chlorverbindung (650–850 cm⁻¹) größer als es nach den Ergebnissen der Symmetrieanalyse für anti (zwei IR-aktive Linien) bzw gauche-Rotameres (vier IR-aktive Linien) allein erwartet wird, und auch die Anzahl der ramanaktiven Valenzschwingungen (576, 558, 432 und 399 cm⁻¹) mit einer IR/Ra-Koinzidenz (395 cm⁻¹ im IR) weist darauf hin. Ähnliches gilt für F₂HSiSiHF₂,

Tabelle 1 Schwingungsspektren der Halogentetrasilane

Abb. 1. (a) Protonengekoppeltes 29 Si-NMR-Spektrum von 1,1,2,2-Tetrafluordisilan; (b) Protonentkoppeltes 29 Si-NMR-Spektrum von 1,1,2,2-Tetrafluordisilan.

 · · · · · · · · · · · · · · · · · · ·	··· · · · · · · · · · · · · · · · · ·	F ₂ HSiSiHF ₂	Cl ₂ HSiSiHCl ₂			
Zuordnung	Ra. (fl)	Ir (gas)	Zuordnung	Ra (fl)	Ir (fl)	Ir (gas)
	2328w		ν _{SiH}	2203vs	2198s	2200s
ν_{SiH}	2219vs	2217vs	ν _{SiH}			
	2165vs		$\delta_{SiSiH}, \delta_{HSiCI}$	790m	800m	808w
$\nu_{\rm SiF}$	911 m	950vs	$\delta_{SiSiH}, \delta_{HSiCl}$	770m	775s	781s
ν _{SiF}	890w		$\delta_{SiSiH}, \delta_{HSiCl}$		770s	775s
VSIE	851s	850vs	$\delta_{SiSiH}, \delta_{HSiCI}$		725s	737s
$\delta_{s;s;H}, \delta_{Hs;F}$	838m	800vs	$\delta_{SiSiH}, \delta_{HSiCI}$		688s	698s
$\delta_{s;s;u}, \delta_{us;t}$	828s	780vs	ν_{SiSi}, ν_{SiCl2}	576s	580vs	589vs
δsisil, δusit	673w		ν_{SiSi}, ν_{SiCl}	558s		
Veisi	499s	510w	^V SiCl	432s	502vs	510vs
Veici	467m		V SICI	399s	395w	400w
3131	448m		Sich, Ssisici	230s		
Science Science	292s	325m	$\delta_{siCl2}, \delta_{siSiCl}$	212w		
δeieie δeiea	240w		$\delta_{siC12}, \delta_{siSiC1}$	180m		
δeier, δeira	212m		Sicis Seisici	140m		
Salar Sir	180s		δειση, δειεισι	131m		
Sisir, Sir2	135w		Sich, Seisich	85b		
Sisir, SiF2	115w		310127 • 515101			

wo ν (SiSi) im Ramanspektrum doppelt auftritt (499 cm⁻¹ und 467 cm⁻¹ mit Koinzidenz bei 510 cm⁻¹, siehe Tabelle 1).

Wir werden über die Ergebnisse von Normalkoordinatenanalysen unter Einbeziehung isotoper Datensätze (Cl₂DSiSiDCl₂ und F₂DSiSiDF₂) sowie von ab initio Berechnungen an anderer Stelle noch berichten [20], auch Elektronenbeugungsuntersuchungen sind in Vorbereitung. Ab initio Berechnungen von ClH₅Si₂ und Cl₂HSiSiH₃, die jedoch keine Schwingungsfrequenzen beinhalten, wurden kürzlich von McKean *et al.* veröffentlicht [21].

3.2. Kernresonanzspektren

Abb. 1 zeigt beispielhaft das ²⁹Si-Spektrum (protonengekoppelt als auch -entkoppelt) des Tetrafluordisilans, die NMR-Parameter sind im experimentellen Teil angegeben. Uns interessierten vor allem auch SiSi-Kopplungskonstanten, die mittels INADEQUATE-Pulsfolge für HCl₂SiSiCl₂H (AA'XX'-Spinsystem) gemessen wurde. Mit 153 \pm 3 Hz ist sie praktisch identisch mit jener von Cl₃SiSiClH₂ (158,5 \pm 0,8 Hz, [15]). Bei F₂HSiSiHF₂ gelang uns die Messung der SiSi-Kopplungskonstante allerdings nicht.

Dank

Die Autoren danken dem Fonds zur Förderung der wissenschaftlichen Forschung, Wien, für die Unterstützung mit Personal- und Sachmittel im Rahmen des Projektes P-9378-CHE.

Literatur

- [1] F. Feher, P. Plichta und R. Guillery, *Inorg. Chem.*, 10 (1971) 606.
- [2] C.H. Van Dyke und A.G. MacDiarmid, J. Inorg. Nucl. Chem., 25(1963) 1503.
- [3] J.E. Bentham, S. Cradock und E.A.V. Ebsworth, Inorg. Nucl. Chem. Lett., 7 (1971) 1077.
- [4] D. Solan und A.B. Burg, Inorg. Chem., 11 (1972) 1253.
- [5] G.R. Langford, D.C. Moody und J.D. Odom, *Inorg. Chem.*, 14 (1975) 134.
- [6] J.J. D'Errico und K.G. Sharp, Inorg. Chem., 28 (1989) 2886.
- [7] R.P. Hollandsworth und M.A. Ring, *Inorg. Chem.*, 7 (1968) 1635.
- [8] J.E. Drake und N. Goddard, J. Chem. Soc. A, (1970) 2587.
- [9] A.D. Craig, J.V. Urenovitch und A.G. MacDiarmid, J. Chem. Soc., (1962) 548.
- [10] A. Haas, R. Süllentrup und C. Krüger, Z. Anorg. Allg. Chem., 619 (1993) 819.
- [11] M. Abedini und A.G. MacDiarmid, Inorg. Chem., 2 (1963) 608.
- [12] K.G. Sharp und J.L. Margrave, Inorg. Chem., 8 (1969) 2655.
- [13] J.F. Bald jr., K.G. Sharp und A.G. MacDiarmid, J. Fluorine Chem., 3 (1973/74) 433.
- [14] W. Uhlig, Z. Anorg. Allg. Chem., 619 (1993) 1479.
- [15] H. Söllradl und E. Hengge, J. Organomet. Chem., 243 (1983) 257.
- [16] M. Weidenbruch, J. Organomet. Chem., 195 (1980) 171.
- [17] M. Weidenbruch, K. Kramer, A. Schäfer und J.K. Blum, Chem. Ber., 118 (1985) 107.
- [18] W. Köll und K. Hassler, in Vorbereitung.
- [19] K. Hassler und M. Pöschl, J. Organomet. Chem., 398 (1990) 225.
- [20] W. Köll, K. Hassler und M. Ernst, in Vorbereitung.
- [21] D.C. McKean, A.L. McPhail, H.G.M. Edwards, I.R. Lewis, V.S. Mastryukov und J.E. Boggs, Spectrochim. Acta, 49A (1993) 1079.